Tag Archives: Wired

Why Some Animals Can Tell More from Less

WIRED

Researchers find that densely packed neurons play an outsize role in quantitative skill—calling into question old assumptions about evolution.

AT AN UPSTATE New York zoo in 2012, an olive baboon sat with her baby at a table opposite a mesh screen and a curious grad student who was holding some peanuts. In one hand, the student had three peanuts. In the other, eight. The mother baboon could see both hands through the mesh, and she chose the one with eight. The student noted the correct choice. But she also noticed the baby, who followed along and interfered by reaching to make choices itself.

“It was clear that the baby understood what the theme was,” says Jessica Cantlon, who studies the evolution of cognition at Carnegie Mellon and led that Seneca Park Zoo study. In a second version of the test, her team found that even tiny baboon infants, at less than a year old, chose the bigger quantity on their own. The team concluded that both adult baboons and their babies could, in a sense, count.

Read the full story in WIRED.

Could Being Cold Actually Be Good for You?

WIRED

Researchers are exploring the health benefits of literally chilling out.

NOBODY LIKES A frozen butt. So when François Haman attempts to recruit subjects to his studies on the health benefits of uncomfortable temperatures, he gets a lot of, well … cold shoulders. And he doesn’t blame them. “You’re not going to attract too many people,” says Haman, who studies thermal physiology at the University of Ottawa, Canada.

The human body is simply lousy at facing the cold. “I’ve done studies where people were exposed to 7 degrees Celsius [44.6 Fahrenheit], which is not even extreme. It’s not that cold. Few people could sustain it for 24 hours,” he says.

Read the full story in WIRED.

Surprise! The Pandemic Has Made People More Science Literate

WIRED

Despite rampant misinformation, Covid-19 has pushed science into the zeitgeist, as people have absorbed new words and how scientific discovery actually works.

FOR THREE GENERATIONS, Betsy Sneller’s family has sipped something they call “Cold Drink.” It’s a sweet mix of leftover liquids, stuff like orange juice and the remnants from cans of fruit, a concept devised by Sneller’s grandmother during the Great Depression. “All the little dregs get mixed together, and it tastes like a fruity concoction,” Sneller says. Cold Drink is an idea—and a name—born from crisis.

Sneller is now a sociolinguist at Michigan State University who studies how language changes in real time. For nearly two years, Sneller has analyzed weekly audio diaries from Michiganders to understand how the pandemic has influenced language in people of all ages, a project initially called MI COVID Diaries. “We find very commonly that people will come up with terms to reflect the social realities that they’re living through,” they say. “New words were coming up almost every week.” As Covid-19 sank its spikes into daily life, people added words and phrases to their vocabularies. Flatten the curve. Antibodies. Covidiots. “Shared crises, like the coronavirus pandemic, cause these astronomical leaps in language change,” Sneller says.

But Sneller has also noticed a more substantive trend emerging: People are internalizing, using, and remembering valuable scientific information. “Because the nature of this crisis is so science-oriented, we’re seeing that a broad swath of people are becoming a little bit more literate in infectious diseases,” they say.

Read the full story in WIRED.

An AI Finds Superbug-Killing Potential in Human Proteins

WIRED

A team scoured the human proteome for antimicrobial molecules and found thousands, plus a surprise about how animals evolved to fight infections.

MARCELO DER TOROSSIAN Torres lifted the clear plastic cover off of a petri dish one morning last June. The dish, still warm from its sleepover in the incubator, smelled of rancid broth. Inside it sat a rubbery bed of amber-colored agar, and on that bed lay neat rows of pinpricks—dozens of colonies of drug-resistant bacteria sampled from the skin of a lab mouse.

Torres counted each pinprick softly to himself, then did some quick calculations. Untreated for the infection, the samples taken from an abscess on the mouse had yielded billions of superbugs, or antibiotic-resistant bacteria. But to his surprise, some of the other rows on the petri dish seemed empty. These were the ones corresponding to samples from mice that received an experimental treatment—a novel antibiotic.

Torres dug up other dishes cultured from more concentrated samples, taken from the same mice who had gotten the antibiotic. These didn’t look empty. When he counted them up, he found that the antibiotic had nuked the bacterial load so that it was up to a million times sparser than the sample from the untreated mouse. “I got very excited,” says Torres, a postdoc specializing in chemistry at the University of Pennsylvania. But this custom antibiotic wasn’t entirely his own recipe. It took an artificial intelligence algorithm scouring a database of human proteins to help Torres and his team find it.

Read the full story in WIRED.

Researchers Want to Restore ‘Good Noise’ in Older Brains

WIRED

Aging people lose variation in brain oxygen levels—a sign of declining cognitive flexibility. A new drug study probes whether that loss can be reversed.

TO EAVESDROP ON a brain, one of the best tools neuroscientists have is the fMRI scan, which helps map blood flow, and therefore the spikes in oxygen that occur whenever a particular brain region is being used. It reveals a noisy world. Blood oxygen levels vary from moment to moment, but those spikes never totally flatten out. “Your brain, even resting, is not going to be completely silent,” says Poortata Lalwani, a PhD student in cognitive neuroscience at the University of Michigan. She imagines the brain, even at its most tranquil, as kind of like a tennis player waiting to return a serve: “He’s not going to be standing still. He’s going to be pacing a little bit, getting ready to hit the backhand.”

Read the full story in WIRED.

Timnit Gebru Says Artificial Intelligence Needs to Slow Down

WIRED

The AI researcher, who left Google last year, says the incentives around AI research are all wrong.

ARTIFICIAL INTELLIGENCE RESEARCHERS are facing a problem of accountability: How do you try to ensure decisions are responsible when the decision maker is not a responsible person, but rather an algorithm? Right now, only a handful of people and organizations have the power—and resources—to automate decision-making.

Organizations rely on AI to approve a loan or shape a defendant’s sentence. But the foundations upon which these intelligent systems are built are susceptible to bias. Bias from the data, from the programmer, and from a powerful company’s bottom line can snowball into unintended consequences. This is the reality AI researcher Timnit Gebru cautioned against at a RE:WIRED talk on Tuesday.

“There were companies purporting [to assess] someone’s likelihood of determining a crime again,” Gebru said. “That was terrifying for me.”

Read the full story in WIRED.

Climate-Driven Extinction Made Mammals’ Teeth Less Weird

WIRED

Fossils show how species diversity—and dental diversity—suddenly collapsed 30 million years ago, suggesting a link between climate, diet, and survival.

DORIEN DE VRIES always asks for permission before flying across the world to touch someone else’s teeth. Some of the owners are anxious. Their teeth are fragile—irreplaceable. But de Vries, a paleontologist, sets their minds at ease. She knows how to be extra careful. “It’s exactly the same as dentists’,” she says of the gooey paste she uses to capture the tooth topography. “It sets really quickly and you can peel it off.” She casts the molds and then 3D-scans the replica teeth into digital immortality.

Well, maybe not exactly like a dentist. The teeth De Vries is working with are up to 56 million years old—they once belonged to the mammals of the late Eocene, Oligocene, and Miocene Epochs and are now preserved in museum and university collections.

Read the full story in WIRED.

This Protein Predicts a Brain’s Future after Traumatic Injury

WIRED

A blood test of “NfL” proteins answers questions about damage severity that doctors—and families—desperately need.

NEIL GRAHAM SEES a lot of head injuries: “Car accidents, violence, assault, gunshots, stabbing—the works, really,” says Graham, a neurologist from Imperial College London who practices at St. Mary’s Hospital nearby.

Doctors stop the bleeding, they relieve any pressure building inside the skull, maybe they’ll put the patient into a coma to keep the brain from overworking when it needs to relax and heal. Imaging can also help—to an extent. CT scans or MRIs pinpoint bruising or specks of hemorrhage in gray matter, the brain’s outer layer where neurons do most of their processing. But a clean scan isn’t a clean bill of health. Trauma to axons—a neuron’s root-like fibers that extend toward other neurons—often appears only in the deeper white matter, sometimes eluding simple scans.

Read the full story in WIRED.

The Long-Lost Tale of an 18th-Century Tsunami, as Told by Trees

WIRED

Local evidence of the cataclysm has literally washed away over the years. But Oregon’s Douglas firs may have recorded clues deep in their tree rings.

ONE NIGHT IN late January 1700, two tectonic plates running along the Pacific Northwest coast released the tension they had accumulated during a centuries-long tête-à-tête. In a tectonic roar, the Juan de Fuca plate slipped past the North American plate, and a roughly 9.0-magnitude earthquake rattled the entire region. The coastline dropped and tsunamis washed over the entire Northwest coast.

Read the full story in WIRED

Dolphins Eavesdrop on Each Other to Avoid Awkward Run-Ins

WIRED

The new finding underscores the complexity of marine mammals’ social life and cognition. It may also help save the snoopy cetaceans.

YOU’D THINK IT would be easier to spy on a Risso’s dolphin. The species frequents nearly every coast in the world. Their bulging heads and streaky gray and white patterning make them some of the most recognizable creatures in the ocean. And as with other cetaceans, they travel in groups and constantly chitchat: Clicks, buzzes, and whistles help them make sense of their underwater existence. Their social world is a sonic one.

“They’re a very vocal species,” says Charlotte Curé, a bioacoustics expert. “Sound is very important for them.”

Read the full story in WIRED