Tag Archives: Chemistry

Fighting Climate Change One Meal at a Time

CHEMMATTERS

Beth Zotter can talk about anything. The problems she encounters as chief executive officer (CEO) of a food company named Umaro are very specific. But the main focus is algae—which Zotter’s Umaro Foods claims is the future of abundant, sustainable protein—and its mission is to save our planet from climate calamity.

Read the full story in ChemMatters April Issue

From Pond Scum to Product: The Chemistry of Algae

CHEMMATTERS

The first time Beth Zotter tried her company’s bacon, it tasted bitter, and powdery. “Most protein concentrates don’t taste very well,” says Zotter, cofounder and chief executive officer of Umaro Foods. Umaro was attempting to re-create crispy, savory bacon out of seaweed.

Why bacon? “It’s America’s favorite food,” said co-founder Amanda Stiles on an episode of the TV show, “Shark Tank,” where the two raised funds for Umaro. “It’s the holy grail of plant-based meat. Sizzling, salty, delicious.” But the real magic of Umaro’s pitch was not the bacon. It was the algae.

Read the full story in ChemMatters April Issue

This is the Lightest Paint in the World

WIRED

An energy-saving coating needs no pigments, and it keeps the surface beneath it 30 degrees cooler.

DEBASHIS CHANDA HAD trouble finding a physicist who could paint. The researchers in his nanoscience lab at the University of Central Florida had already worked out the kinks in the high-end machinery needed to create a revolutionary new kind of cooling paint. They had filled vials with vivid colors. But when it came time to show it off, they hit a wall. “We could barely draw a butterfly by hand, which is kind of a kid’s drawing,” says Chanda.

They did it anyway. The shape and the four-color design do look basic, but the simplicity is deceptive. If you zoom in deep—to invisible dimensions—this paint is almost nothing at all like the paint you know.

Read the full story in WIRED

Can We Destroy ‘Forever Chemicals’?

INVERSE

Emerging tech could wipe out tiny toxic substances from drinking water.

To ensure that drinking water is safe for consumption, the U.S. Environmental Protection Agency is proposing the first-ever federal restrictions on six “forever chemicals” known to harm human health. The agency will hold a public comment session on May 4 and expects to finalize the regulation by the end of this year.

Previously, the EPA recommended limiting the levels of two varieties of PFAS — perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) — to 70 parts per trillion in drinking water. Now, the agency wants to mandate stricter levels: 4 ppt for PFOA and 4 ppt for PFOS. Four other kinds of PFAS will also be regulated on a proposed “hazard index” to determine their cumulative risk.

“EPA anticipates that if fully implemented, the rule will prevent thousands of deaths and reduce tens of thousands of serious PFAS-attributable illnesses,” the agency wrote in a statement.

Scientists and environmental groups are praising the proposal, which they say is long overdue. But setting limits is just half the battle: Scientists are now hunting for ways to filter and destroy the chemicals before they can make it into our water.

Read the full story in Inverse

The World’s Farms Are Hooked on Phosphorus. It’s a Problem

WIRED

Half of the globe’s crop productivity comes from a key fertilizer ingredient that’s non-renewable—and literally washing away.

DISRUPTING EARTH’S CHEMICAL cycles brings trouble. But planet-warming carbon dioxide isn’t the only element whose cycle we’ve turned wonky—we’ve got a phosphorus problem too. And it’s a big one, because we depend on this element to grow the world’s crops. “I don’t know if it would be possible to have a full world without any mineral phosphorus fertilizer,” says Joséphine Demay, a PhD student at INRAE, France’s National Research Institute for Agriculture, Food and the Environment.

Since the 1800s, agriculturalists have known that elemental phosphorus is a crucial fertilizer. Nations quickly began mining caches of “phosphate rock,” minerals rich in the element. By the middle of the 20th century, companies had industrialized chemical processes to turn it into a form suitable for supercharging crops, hardening them against disease and making them able to support more people and livestock. That approach worked remarkably well: The post-World War II “Green Revolution” fed countless people thanks to fertilizers and pesticides. But sometimes there’s too much of a good thing.

Read the full story in WIRED

The Sci-Fi Dream of a ‘Molecular Computer’ Is Getting More Real

WIRED

Chemists have long conceptualized tiny machines that could fabricate drugs, plastics, and other polymers that are hard to build with bigger tools.

DAVID LEIGH DREAMS of building a small machine. Really small. Something minuscule. Or more like … molecule. “Chemists like me have been working on trying to turn molecules into machines for about 25 years now,” says Leigh, an organic chemist from the University of Manchester in the United Kingdom. “And of course, it’s all baby steps. You’re building on all those that went before you.”

Read the full story in WIRED

These Nanobots Can Swim Around a Wound and Kill Bacteria

WIRED

Researchers have created autonomous particles covered with patches of protein “motors.” They hope these bots will tote lifesaving drugs through bodily fluids.

THERE’S ALWAYS BEEN something seductive about a nanobot. Comic books and movies implore you to imagine these things, thousands of times thinner than a human hair and able to cruise around a body and repair a bone or heal an illness. (Or, if they’re more nefarious, simply explode.) Their scale is unfathomably finite. Their possibilities, sci-fi will have you believe, wildly infinite. While that incongruity makes it perfect for the denizens of a writers’ room figuring out how to kill James Bond, it’s also a sort of curse. Surely we can’t take tech like this seriously. Can we?

It turns out, the nanobots are among us.

Read the full story in WIRED

This Plastic Dot Sniffs Out Infections Doctors Can’t See

WIRED

Keeping wounds covered can help them stay clean. But if bacteria grow beneath the bandages, things can get dangerous.

LIFE, AT ALL scales, leaves behind chemical fingerprints. Some are scents we can pick up with our noses: Jasmine petals lend their sweet aldehydes; an upstairs neighbor leaves his noxious amines in the stairwell. “But there are also gasses that we can’t smell, because they’re just that basic kind of background,” says Andrew Mills, a professor of chemistry at Queen’s University Belfast, United Kingdom. “Things basically undergoing life, turning oxygen into carbon dioxide.”

Mills specializes in detecting volatile chemicals, from stinky sulfides to odorless CO2. His lab has focused on sensing gasses as signatures of strange life in undesirable places: Think contaminated ground beef and—more recently—infected wounds. In a study published last month in the journal Chemical Communications, Mills unveiled a simple CO2 detector that can be inserted into dressings for chronic wounds. It changes color when it senses rising concentrations of the gas, a tell-tale sign of dangerous infections.

Read the full story in WIRED

An AI Finds Superbug-Killing Potential in Human Proteins

WIRED

A team scoured the human proteome for antimicrobial molecules and found thousands, plus a surprise about how animals evolved to fight infections.

MARCELO DER TOROSSIAN Torres lifted the clear plastic cover off of a petri dish one morning last June. The dish, still warm from its sleepover in the incubator, smelled of rancid broth. Inside it sat a rubbery bed of amber-colored agar, and on that bed lay neat rows of pinpricks—dozens of colonies of drug-resistant bacteria sampled from the skin of a lab mouse.

Torres counted each pinprick softly to himself, then did some quick calculations. Untreated for the infection, the samples taken from an abscess on the mouse had yielded billions of superbugs, or antibiotic-resistant bacteria. But to his surprise, some of the other rows on the petri dish seemed empty. These were the ones corresponding to samples from mice that received an experimental treatment—a novel antibiotic.

Torres dug up other dishes cultured from more concentrated samples, taken from the same mice who had gotten the antibiotic. These didn’t look empty. When he counted them up, he found that the antibiotic had nuked the bacterial load so that it was up to a million times sparser than the sample from the untreated mouse. “I got very excited,” says Torres, a postdoc specializing in chemistry at the University of Pennsylvania. But this custom antibiotic wasn’t entirely his own recipe. It took an artificial intelligence algorithm scouring a database of human proteins to help Torres and his team find it.

Read the full story in WIRED.

From Chemist to Food-Tech CEO

ACS ChemMatters Magazine

Aidan Mouat credits “dumb luck” for setting him on a path from chemist to CEO. Mouat has for the past six years run Hazel Technologies, which invented a small packet of chemicals to keep food fresh longer before reaching grocers.

If your store shelves are stocked year-round, you might wonder why these pouches are useful in the first place. What you don’t see is what gets thrown away. The reality is that the world produces “a colossal amount of food waste,” Mouat says. “We have a food system that is focused very heavily on production, instead of efficiency.” So, Mouat and his company co-founders devised a way to help prevent produce spoilage on its way from farm to store.

Read the full story in the December issue of ChemMatters