All posts by Max G. Levy

About Max G. Levy

Science Journalist

Immunologists hack body rhythms for medicine

Drug Discovery News

The success of vaccines and cancer treatments varies depending on the time of day they are delivered. Researchers now look to exploit circadian rhythms to improve health outcomes.

On a warm Parisian evening around 1729, the Seine river snailed past the Institut de France, inside which polymath Jean-Jacques Dortous de Mairan fixated on the slow movements of a plant (1). The fern-like leaves of his Mimosa pudica spread wide toward the sun during the day. Yet at night, the leaves furled back inward as if to sleep.

Dortous de Mairan intervened. He stowed the plant in the dark, wondering whether the cycle would hold. It did (2). Even without absorbing sunlight, the mimosa carried out its daily rhythm. 200 years passed before biologists appreciated the discovery as an internal clock and coined the term “circadian rhythm.”


“For a few centuries, people interested in circadian rhythms were mainly botanists,” said Nicolas Cermakian, a chronobiologist at McGill University.

Today, scientists understand the importance of daily rhythms. The human circadian system regulates sleep and the function of every tissue in the body. All organs and cells throughout the body have their own internal clocks, which cycle between different functions such as assembling particular proteins and receiving molecular messages. Disruptions like sleep deprivation, shift work, and even jet lag can deteriorate health by increasing the risk of metabolic disorders, cardiovascular disease, and cancer, and scientists’ understanding of human rhythms is rapidly evolving (3).

Read the full story in Drug Discovery News

For AI to Know What Something Is, It Must Know What Something Isn’t

Quanta Magazine

Today’s language models are more sophisticated than ever, but challenges with negation persist.

Nora Kassner suspected her computer wasn’t as smart as people thought. In October 2018, Google released a language model algorithm called BERT, which Kassner, a researcher in the same field, quickly loaded on her laptop. It was Google’s first language model that was self-taught on a massive volume of online data. Like her peers, Kassner was impressed that BERT could complete users’ sentences and answer simple questions. It seemed as if the large language model (LLM) could read text like a human (or better).

But Kassner, at the time a graduate student at Ludwig Maximilian University of Munich, remained skeptical. She felt LLMs should understand what their answers mean — and what they don’t mean. It’s one thing to know that a bird can fly. “A model should automatically also know that the negated statement — ‘a bird cannot fly’ — is false,” she said. But when she and her adviser, Hinrich Schütze, tested BERT and two other LLMs in 2019, they found that the models behaved as if words like “not” were invisible.

Read the full story in Quanta Magazine

Everyone Was Wrong About Reverse Osmosis—Until Now

WIRED

A new paper showing how water actually travels through a plastic membrane could make desalination more efficient. That’s good news for a thirsty world.

MENACHEM ELIMELECH NEVER made peace with reverse osmosis. Elimelech, who founded Yale’s environmental engineering program, is something of a rock star among those who develop filtration systems that turn seawater or wastewater into clean drinking water. And reverse osmosis is a rock star among filter technologies: It has dominated how the world desalinates seawater for about a quarter of a century. Yet nobody really knew how it worked. And Elimelech hated that.

Read the full story in WIRED

The Modern World Is Aging Your Brain

WIRED

In a remote part of the Amazon, anthropologists and neuroscientists are learning about life and health without an “embarrassment of riches.”

BESIDE THE SCHOOLHOUSE turned medical station in the northern Bolivian village of Las Maras, everyone is waiting for breakfast. Today’s meal is rice and eggs, generously salted and adorned with globs of mayo: hearty fuel for a workday of foraging and hunting animals. Sheltering from the rain under palms, rubber trees, and a series of large tarps, the people are aged from 40 to 80-plus—all of them Tsimane, an Indigenous group living in the lowlands of the Amazon.

Each has been asked to fast until after they’ve had a voluntary medical exam. Blood draws. Urine and stool samples. Respiratory tests under one tarp; artery stiffness measurements under another. While they wait to speak with a doctor, people give interviews to fellow Tsimane who are collecting anthropological data. Later—if they desire—the interviewees will take a drive to the nearby city of Trinidad to get their brains scanned.

Read the full story in WIRED

Fighting Climate Change One Meal at a Time

CHEMMATTERS

Beth Zotter can talk about anything. The problems she encounters as chief executive officer (CEO) of a food company named Umaro are very specific. But the main focus is algae—which Zotter’s Umaro Foods claims is the future of abundant, sustainable protein—and its mission is to save our planet from climate calamity.

Read the full story in ChemMatters April Issue

From Pond Scum to Product: The Chemistry of Algae

CHEMMATTERS

The first time Beth Zotter tried her company’s bacon, it tasted bitter, and powdery. “Most protein concentrates don’t taste very well,” says Zotter, cofounder and chief executive officer of Umaro Foods. Umaro was attempting to re-create crispy, savory bacon out of seaweed.

Why bacon? “It’s America’s favorite food,” said co-founder Amanda Stiles on an episode of the TV show, “Shark Tank,” where the two raised funds for Umaro. “It’s the holy grail of plant-based meat. Sizzling, salty, delicious.” But the real magic of Umaro’s pitch was not the bacon. It was the algae.

Read the full story in ChemMatters April Issue

This is the Lightest Paint in the World

WIRED

An energy-saving coating needs no pigments, and it keeps the surface beneath it 30 degrees cooler.

DEBASHIS CHANDA HAD trouble finding a physicist who could paint. The researchers in his nanoscience lab at the University of Central Florida had already worked out the kinks in the high-end machinery needed to create a revolutionary new kind of cooling paint. They had filled vials with vivid colors. But when it came time to show it off, they hit a wall. “We could barely draw a butterfly by hand, which is kind of a kid’s drawing,” says Chanda.

They did it anyway. The shape and the four-color design do look basic, but the simplicity is deceptive. If you zoom in deep—to invisible dimensions—this paint is almost nothing at all like the paint you know.

Read the full story in WIRED

Can We Destroy ‘Forever Chemicals’?

INVERSE

Emerging tech could wipe out tiny toxic substances from drinking water.

To ensure that drinking water is safe for consumption, the U.S. Environmental Protection Agency is proposing the first-ever federal restrictions on six “forever chemicals” known to harm human health. The agency will hold a public comment session on May 4 and expects to finalize the regulation by the end of this year.

Previously, the EPA recommended limiting the levels of two varieties of PFAS — perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) — to 70 parts per trillion in drinking water. Now, the agency wants to mandate stricter levels: 4 ppt for PFOA and 4 ppt for PFOS. Four other kinds of PFAS will also be regulated on a proposed “hazard index” to determine their cumulative risk.

“EPA anticipates that if fully implemented, the rule will prevent thousands of deaths and reduce tens of thousands of serious PFAS-attributable illnesses,” the agency wrote in a statement.

Scientists and environmental groups are praising the proposal, which they say is long overdue. But setting limits is just half the battle: Scientists are now hunting for ways to filter and destroy the chemicals before they can make it into our water.

Read the full story in Inverse

This Lab-Grown Skin Could Revolutionize Transplants

WIRED

A new kind of “edgeless” engineered tissue can fit any irregular shape, paving the way for hand and face grafts that look and move better.

ALBERTO PAPPALARDO WAS nervous the morning before the transplant. He’d spent the previous month nurturing a cluster of skin cells until they reached their final form: a pinkish-white tissue in the shape of a mouse’s hindlimb that could be slipped onto the animal like a pant leg. If all went according to plan, the mouse’s surrounding skin would accept the lab-grown stuff as its own.

In the end, it took less than 30 seconds to position the new skin, and under 10 minutes to complete the whole procedure. “It was a perfect fit,” recalls Pappalardo, a medical doctor and postdoc focusing on dermatology and tissue engineering at Columbia University Medical Center. That’s a big deal, because it could help solve a persistent challenge in treating burns and other large wounds: how to cover irregular shapes with real, functional skin.

Read the full story in WIRED