Tag Archives: Feature

Immunologists hack body rhythms for medicine

Drug Discovery News

The success of vaccines and cancer treatments varies depending on the time of day they are delivered. Researchers now look to exploit circadian rhythms to improve health outcomes.

On a warm Parisian evening around 1729, the Seine river snailed past the Institut de France, inside which polymath Jean-Jacques Dortous de Mairan fixated on the slow movements of a plant (1). The fern-like leaves of his Mimosa pudica spread wide toward the sun during the day. Yet at night, the leaves furled back inward as if to sleep.

Dortous de Mairan intervened. He stowed the plant in the dark, wondering whether the cycle would hold. It did (2). Even without absorbing sunlight, the mimosa carried out its daily rhythm. 200 years passed before biologists appreciated the discovery as an internal clock and coined the term “circadian rhythm.”


“For a few centuries, people interested in circadian rhythms were mainly botanists,” said Nicolas Cermakian, a chronobiologist at McGill University.

Today, scientists understand the importance of daily rhythms. The human circadian system regulates sleep and the function of every tissue in the body. All organs and cells throughout the body have their own internal clocks, which cycle between different functions such as assembling particular proteins and receiving molecular messages. Disruptions like sleep deprivation, shift work, and even jet lag can deteriorate health by increasing the risk of metabolic disorders, cardiovascular disease, and cancer, and scientists’ understanding of human rhythms is rapidly evolving (3).

Read the full story in Drug Discovery News

For AI to Know What Something Is, It Must Know What Something Isn’t

Quanta Magazine

Today’s language models are more sophisticated than ever, but challenges with negation persist.

Nora Kassner suspected her computer wasn’t as smart as people thought. In October 2018, Google released a language model algorithm called BERT, which Kassner, a researcher in the same field, quickly loaded on her laptop. It was Google’s first language model that was self-taught on a massive volume of online data. Like her peers, Kassner was impressed that BERT could complete users’ sentences and answer simple questions. It seemed as if the large language model (LLM) could read text like a human (or better).

But Kassner, at the time a graduate student at Ludwig Maximilian University of Munich, remained skeptical. She felt LLMs should understand what their answers mean — and what they don’t mean. It’s one thing to know that a bird can fly. “A model should automatically also know that the negated statement — ‘a bird cannot fly’ — is false,” she said. But when she and her adviser, Hinrich Schütze, tested BERT and two other LLMs in 2019, they found that the models behaved as if words like “not” were invisible.

Read the full story in Quanta Magazine

The Modern World Is Aging Your Brain

WIRED

In a remote part of the Amazon, anthropologists and neuroscientists are learning about life and health without an “embarrassment of riches.”

BESIDE THE SCHOOLHOUSE turned medical station in the northern Bolivian village of Las Maras, everyone is waiting for breakfast. Today’s meal is rice and eggs, generously salted and adorned with globs of mayo: hearty fuel for a workday of foraging and hunting animals. Sheltering from the rain under palms, rubber trees, and a series of large tarps, the people are aged from 40 to 80-plus—all of them Tsimane, an Indigenous group living in the lowlands of the Amazon.

Each has been asked to fast until after they’ve had a voluntary medical exam. Blood draws. Urine and stool samples. Respiratory tests under one tarp; artery stiffness measurements under another. While they wait to speak with a doctor, people give interviews to fellow Tsimane who are collecting anthropological data. Later—if they desire—the interviewees will take a drive to the nearby city of Trinidad to get their brains scanned.

Read the full story in WIRED

Machine Learning Gets a Quantum Speedup

QUANTA MAGAZINE

Two teams have shown how quantum approaches can solve problems faster than classical computers, bringing physics and computer science closer together.

For Valeria Saggio to boot up the computer in her former Vienna lab, she needed a special crystal, only as big as her fingernail. Saggio would place it gently into a small copper box, a tiny electric oven, which would heat the crystal to 77 degrees Fahrenheit. Then she would switch on a laser to bombard the crystal with a beam of photons.

This crystal, at this precise temperature, would split some of those photons into two photons. One of these would go straight to a light detector, its journey finished; the other would travel into a tiny silicon chip — a quantum computing processor. Miniature instruments on the chip could drive the photon down different paths, but ultimately there were only two outcomes: the right way, and the many wrong ways. Based on the result, her processor could choose another path and try again.

The sequence feels more Rube Goldberg than Windows, but the goal was to have a quantum computer teach itself a task: Find the right way out.

Read the full story in Quanta Magazine

The Race to Put Silk in Nearly Everything

WIRED

The fiber has been considered a “miracle material” for anything from body parts to food. Has the revolution finally arrived?

ALI ALWATTARI STILL remembers the day he met the goats. It was mid-May, 19 years ago, in Quebec. The sun was lighting up the old maple sugar farm—and small huts where the goats were living. Alwattari, a materials scientist, had spent his career tinkering with chemistry equipment for Procter & Gamble, developing fibers used in Pampers and Swiffers. But the startup Nexia Biotechnologies was aiming to use an entirely different kind of polymer producer—and it was gazing back at him with its rectangular pupils.

Read the full story in WIRED

The Long, Strange Life of the World’s Oldest Naked Mole Rat

WIRED

These death-defying rodents do not age normally. Will their weird biology help extend human life spans, or are those ambitions a dead end?

JOE HAS LOOKED old since the day he was born, back in 1982. He’s pink and squinty and wrinkly. His teeth are weird: His incisors sit outside his lips to keep the dirt out of his mouth as he digs tunnels for his tube-shaped body.

“He looks remarkably the same,” says Rochelle Buffenstein, a comparative biologist who has studied naked mole rats since the 1980s when she was doing her doctoral work in Cape Town, South Africa. That’s where she met Joe. (He doesn’t have an official name, so we’re going with Joe.) A few years later, Buffenstein was starting her own research on vitamin D metabolism in mole rats because they spend all their time in dark tunnels, away from the sun. She moved to Johannesburg with a few subjects to begin her work, leaving Joe behind. He was eventually shipped off to the Cincinnati Zoo. But he and Buffenstein would soon reunite.

Read the full story in WIRED