WIRED
Growing organoids in dishes and xenografts in mice lets scientists recreate a living person’s tumor—and test dozens of drugs against them at the same time.
IN 2018, ALANA Welm found herself in an exciting, yet burdensome, position. The University of Utah breast cancer research lab where she leads joint projects with her husband, Bryan Welm, had created lab-grown versions of real tumors isolated from living cancer patients. Each cancer had been translated into two kinds of biological models: xenografts, made by implanting tissue into mice, and organoids, miniature clumps of tissue grown in plastic dishes.
Each simulated cancer was a way to test which of about 45 drugs, some experimental and others approved by the US Food and Drug Administration, might perform best for the real patient. During testing on one patient’s organoids, the researchers isolated a drug that effectively killed its cancer cells. That was the exciting bit. The burden: Welm had no right to do anything about it. She couldn’t tell the patient or her doctor. “We were just doing this for research,” says Welm.
This particular drug had already earned FDA approval to be used against breast cancer, but it wasn’t approved for this patient’s type of cancer. So Welm dialed up her university’s Institutional Review Board, an ethics oversight group.“We called them and said: We found this, we really think we need to let them know,” Welm recalls. The board agreed; the team could bring the patient’s physician into the loop. “That really was an eye-opener,” Welm says. “Wow, we can actually make a difference!”
Yet by the time Welm reached the physician, it was too late. The patient passed away shortly after. “It was heartbreaking,” she says. But it was also motivating: The Welms’ team doubled down on efforts to refine their methods and turn their research into a clinical tool.